커뮤니티

질문과답변

What's Right About Deepseek

페이지 정보

작성자 Dianne 날짜25-02-01 04:43 조회4회 댓글0건

본문

The emergence of Chinese AI app DeepSeek has shocked monetary markets, Deepseek and prompted US President Donald Trump to explain it as "a wake-up call" for the US tech industry. DeepSeek was capable of train the model using a data heart of Nvidia H800 GPUs in just round two months - GPUs that Chinese companies were lately restricted by the U.S. Model particulars: The DeepSeek models are trained on a 2 trillion token dataset (split across principally Chinese and English). Why this matters - Made in China can be a factor for AI fashions as properly: DeepSeek-V2 is a extremely good model! That's less than 10% of the price of Meta’s Llama." That’s a tiny fraction of the hundreds of tens of millions to billions of dollars that US firms like Google, Microsoft, xAI, and OpenAI have spent coaching their models. At solely $5.5 million to practice, it’s a fraction of the cost of fashions from OpenAI, Google, or Anthropic which are often within the a whole lot of thousands and thousands. The an increasing number of jailbreak research I read, the more I believe it’s mostly going to be a cat and mouse recreation between smarter hacks and models getting sensible sufficient to know they’re being hacked - and right now, for the sort of hack, the fashions have the benefit.


ME_Aroostook_Co_Houlton_map.png It’s simple to see the mix of methods that lead to large efficiency positive aspects compared with naive baselines. The experimental outcomes present that, when attaining the same degree of batch-sensible load stability, the batch-smart auxiliary loss may also obtain related model efficiency to the auxiliary-loss-free deepseek methodology. Other leaders in the sector, together with Scale AI CEO Alexandr Wang, Anthropic cofounder and CEO Dario Amodei, and Elon Musk expressed skepticism of the app's efficiency or of the sustainability of its success. He et al. (2024) Y. He, S. Li, J. Liu, Y. Tan, W. Wang, H. Huang, X. Bu, H. Guo, C. Hu, B. Zheng, et al. Franzen, Carl (20 November 2024). "DeepSeek's first reasoning mannequin R1-Lite-Preview turns heads, beating OpenAI o1 efficiency". DeepSeek launched its R1-Lite-Preview model in November 2024, claiming that the new model may outperform OpenAI’s o1 household of reasoning fashions (and achieve this at a fraction of the price).


DeepSeek-LLM-7B-Chat is a complicated language mannequin trained by DeepSeek, a subsidiary company of High-flyer quant, comprising 7 billion parameters. This method permits us to take care of EMA parameters with out incurring additional reminiscence or time overhead. This strategy permits the mannequin to discover chain-of-thought (CoT) for fixing complex issues, resulting in the development of DeepSeek-R1-Zero. A simple technique is to use block-clever quantization per 128x128 parts like the way we quantize the mannequin weights. Delayed quantization is employed in tensor-clever quantization frameworks (NVIDIA, 2024b; Peng et al., 2023b), which maintains a historical past of the maximum absolute values across prior iterations to infer the current value. The CodeUpdateArena benchmark represents an vital step ahead in evaluating the capabilities of massive language fashions (LLMs) to handle evolving code APIs, a essential limitation of present approaches. All these settings are one thing I will keep tweaking to get the perfect output and I'm additionally gonna keep testing new fashions as they grow to be accessible.


Are you sure you need to cover this comment? To include file path information, a comment indicating the file’s path is added initially of every file. 소스 코드 60%, 수학 코퍼스 (말뭉치) 10%, 자연어 30%의 비중으로 학습했는데, 약 1조 2천억 개의 코드 토큰은 깃허브와 CommonCrawl로부터 수집했다고 합니다. DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다. DeepSeekMoE는 LLM이 복잡한 작업을 더 잘 처리할 수 있도록 위와 같은 문제를 개선하는 방향으로 설계된 MoE의 고도화된 버전이라고 할 수 있습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. 조금만 더 이야기해 보면, 어텐션의 기본 아이디어가 ‘디코더가 출력 단어를 예측하는 각 시점마다 인코더에서의 전체 입력을 다시 한 번 참고하는 건데, 이 때 모든 입력 단어를 동일한 비중으로 고려하지 않고 해당 시점에서 예측해야 할 단어와 관련있는 입력 단어 부분에 더 집중하겠다’는 겁니다. DeepSeekMoE는 각 전문가를 더 작고, 더 집중된 기능을 하는 부분들로 세분화합니다. MoE에서 ‘라우터’는 특정한 정보, 작업을 처리할 전문가(들)를 결정하는 메커니즘인데, 가장 적합한 전문가에게 데이터를 전달해서 각 작업이 모델의 가장 적합한 부분에 의해서 처리되도록 하는 것이죠.



If you liked this report and you would like to receive extra details about ديب سيك kindly go to our web-page.

댓글목록

등록된 댓글이 없습니다.


주소 : 부산광역시 해운대구 재반로 126(재송동) | 상호 : 제주두툼이홍돼지 |
사업자번호 : 617-36-76229 | 대표 : 이선호 | TEL : 010-9249-9037
COPYRIGHT (C) ALL RIGHT ESERVED
010-9249-9037 창업문의 :  
제주두툼이홍돼지